在 TCP 中,拥塞控制通常分为四个主要方向:
- 慢启动
- 拥塞避免
- 快速重传
- 快速恢复
慢启动在 BBR 中仍然保留。它在不知道瓶颈带宽时以指数级增长达到或检测阈值,如图中前 4 秒。达到阈值后,开始加性增阶段,即拥塞避免。直到发生丢包后进行快速恢复和快速重传
如果瓶颈路由器的缓存特别大,那么这种以丢包作为探测依据的拥塞算法将会导致严重问题:TCP链路上长时间RTT变大,但吞吐量维持不变。
事实上,我们的传输速度在3个阶段被不同的因素限制:
- 应用程序限制阶段,此时 RTT 不变,随着应用程序开始发送大文件,速率直线上升
- BDP限制阶段,此时RTT开始不断上升,但吞吐量不变,因为此时瓶颈路由器已经达到上限,缓冲队列正在不断增加
- 瓶颈路由器缓冲队列限制阶段,此时开始大量丢包
如下所示:
如CUBIC这样基于丢包的拥塞控制算法在第2条灰色竖线发生作用,这已经太晚了,更好的作用点是BDP上限开始发挥作用时,也就是第1条灰色竖线。
什么叫做BDP呢?它叫做带宽时延积,例如一条链路的带宽是100Mbps,而RTT是40ms,那么
BDP=100Mbps*0.04s=4Mb=0.5MB
即平均每秒飞行中的报文应当是0.5MB。因此Linux的接收窗口缓存常参考此设置:
第1条灰色竖线,是瓶颈路由器的缓冲队列刚刚开始积压时的节点。随着内存的不断降价,路由器设备的缓冲队列也会越来越大,CUBIC算法会造成更大的RTT时延!
而BBR通过检测RTprop和BtlBw来实现拥塞控制。什么是RTprop呢?这是链路的物理时延,因为RTT里含有报文在路由器队列里的排队时间、ACK的延迟确认时间等。什么叫延迟确认呢?TCP每个报文必须被确认,确认动作是通过接收端发送ACK报文实现的,但由于TCP和IP头部有40个字节,如果不携带数据只为发送ACK网络效率过低,所以会让独立的ACK报文等一等,看看有没有数据发的时候顺便带给对方,或者等等看多个ACK一起发。所以,可以用下列公式表示RTT与RTprop的差别:
RTT我们可以测量得出,RTprop呢,我们只需要找到瓶颈路由器队列为空时多次RTT测量的最小值即可:
而BtlBw全称是bottleneck bandwith,即瓶颈带宽,我们可以通过测量已发送但未ACK确认的飞行中字节除以飞行时间deliveryRate来测量:
早在1979年Leonard Kleinrock就提出了第1条竖线是最好的拥塞控制点,但被Jeffrey M. Jaffe证明不可能实现,因为没有办法判断RTT变化到底是不是因为链路变化了,从而不同的设备瓶颈导致的,还是瓶颈路由器上的其他TCP连接的流量发生了大的变化。但我们有了RTprop和BtlBw后,当RTprop升高时我们便得到了BtlBw,这便找到第1条灰色竖线最好的拥塞控制点,也有了后续发送速率的依据。
基于BBR算法,由于瓶颈路由器的队列为空,最直接的影响就是RTT大幅下降,可以看到下图中CUBIC红色线条的RTT比BBR要高很多:
而因为没有丢包,BBR传输速率也会有大幅提升,下图中插入的图为CDF累积概率分布函数,从CDF中可以很清晰的看到CUBIC下大部分连接的吞吐量都更低:
如果链路发生了切换,新的瓶颈带宽升大或者变小怎么办呢?BBR会尝试周期性的探测新的瓶颈带宽,这个周期值为1.25、0.75、1、1、1、1,如下所示:
1.25会使得BBR尝试发送更多的飞行中报文,而如果产生了队列积压,0.75则会释放队列。下图中是先以10Mbps的链路传输TCP,在第20秒网络切换到了更快的40Mbps链路,由于1.25的存在BBR很快发现了更大的带宽,而第40秒又切换回了10Mbps链路,2秒内由于RTT的快速增加BBR调低了发送速率,可以看到由于有了pacing_gain周期变换BBR工作得很好。
pacing_gain周期还有个优点,就是可以使多条初始速度不同的TCP链路快速的平均分享带宽,如下图所示,后启动的连接由于过高估计BDP产生队列积压,早先连接的BBR便会在数个周期内快速降低发送速率,最终由于不产生队列积压下RTT是一致的,故平衡时5条链路均分了带宽:
我们再来看看慢启动阶段,下图网络是10Mbps、40ms,因此未确认的飞行字节数应为
10Mbps*0.04s=0.05MB
红色线条是CUBIC算法下已发送字节数,而蓝色是ACK已确认字节数,绿色则是BBR算法下的已发送字节数。显然,最初CUBIC与BBR算法相同,在0.25秒时飞行字节数显然远超过了0.05MB字节数,大约在 0.1MB字节数也就是2倍BDP:
大约在0.3秒时,CUBIC开始线性增加拥塞窗口,而到了0.5秒后BBR开始降低发送速率,即排空瓶颈路由器的拥塞队列,到0.75秒时飞行字节数调整到了BDP大小,这是最合适的发送速率。
当繁忙的网络出现大幅丢包时,BBR的表现也远好于CUBIC算法。下图中,丢包率从0.001%到50%时,可以看到绿色的BBR远好于红色的CUBIC。大约当丢包率到0.1%时,CUBIC由于不停的触发拥塞算法,所以吞吐量极速降到10Mbps只有原先的1/10,而BBR直到5%丢包率才出现明显的吞吐量下降。
CUBIC造成瓶颈路由器的缓冲队列越来越满,RTT时延就会越来越大,而操作系统对三次握手的建立是有最大时间限制的,这导致建CUBIC下的网络极端拥塞时,新连接很难建立成功,如下图中RTT中位数达到 100秒时 Windows便很难建立成功新连接,而200秒时Linux/Android也无法建立成功。
BBR算法的伪代码如下,这里包括两个流程,收到ACK确认以及发送报文:
1 | function onAck(packet) |
1 | function send(packet) |
BBR算法对网络世界的拥塞控制有重大意义,尤其未来可以想见路由器的队列一定会越来越大。HTTP3放弃了TCP协议,这意味着它需要在应用层(各框架中间件)中基于BBR算法实现拥塞控制,所以,BBR算法其实离我们很近。理解BBR,我们便能更好的应对网络拥塞导致的性能问题,也会对未来的拥塞控制算法发展脉络更清晰。